• 首页
  • 科室栏目
  • 产品中心
  • 新闻中心
  • 政策法规
  • 客户服务
  • 关于我们
  • 网上商城
   栏目导航  /  News
  • 收藏宝典
  • 专业会议
  • 招标公示
  • 导师团队
  • 招聘信息
  • 找代理
  • 医械商机
  • 技术支持
  • 找专家
  • 找售后
  • 找资金
  • 找科室
  • 找工作
  • 找企业
  • 医院风采
  • 医械讲堂
  • 视频课件
  • 应聘信息
  • 中标公示
锟斤拷锟斤拷支锟斤拷 /  about us
您现在的位置是:首页- 锟斤拷锟斤拷支锟斤拷
“可视化”人工神经网络揭示细胞内部活动 深度学习算法将能预测遗传变化的生理影响
发布人:网站管理员 发布时间:2018/3/28 点击:175次

  英国《自然·方法》杂志日前在线发表的一篇论文称,美国科学家创建了一种“可视化”人工神经网络,这是全新的、过程可获取的深度学习计算机算法,能够揭示细胞的内部活动。其有能力帮助人们更好地理解此前未知的基因学和生理学背后的机制。

  人工智能(AI)已可以执行多种通常需要人类完成的复杂任务,比如面部识别、翻译语言和玩游戏。而深度学习网络,是机器学习中一种基于对数据进行表征学习的方法,也被称为人工神经网络,本身是在现代神经科学研究成果的基础上提出的,试图通过模拟大脑神经网络处理、记忆信息的方式来进行信息处理。现在,深度学习网络越来越多地用于生物数据分析自动化。

  深度学习模型的一个挑战,是它们的“黑箱”性质,也就是说无法轻易鉴定一个模型执行某项任务时的过程。科学家们认为,在生物应用方面,调查深度学习模型如何识别和处理所分析的数据的能力,或可以帮助研究者更好地理解这些数据背后的生物学。

  此次,美国加州大学圣地亚哥分校研究人员特雷·艾德克及其同事,通过将一个深度学习算法的结构映射在已知细胞内分子系统的结构上,创建了一个“可视的”人工神经网络。团队通过实验表明,一旦模型完成训练,它便能够预测遗传变化的生理影响。

  此外,由于模型的组分均可获取,它也能让科学家更好地理解基因与生理特征之间的关系及其背后机制。研究人员还表明,这种“可视”的神经网络可用于理解遗传逻辑,鉴定哪些分子系统对特定生理特征有重要影响,以及发现细胞中不为人知的新过程。

来源:科技日报

电话:0351-5252561
公司地址:北京市朝阳区来广营西路55号瑞凰国际家居商城四层401号
Copyright©2018-2019 北京涵泰科技有限公司

技术支持:天祥网络